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The multislice formulation of Cowley and Moodie for high-energy electron scattering is rederived from the 
SchrSdinger equation, and the validity of the finite slice approach in practical computation is theoretically 
proved by the stationary-phase approximation. A set of computer programs for the multislice method is 
developed, where the convolution integral is carried out through the fast Fourier transform. The following 
conditions are required to obtain a sufficiently accurate result in multislice calculations: (1) the maximum 
slice thickness should be about kd 2, where k is the wavenumber of the incident electrons and d is the distance 
over which the potential does not change appreciably; (2) there must be a sufficient number of beams in the 
multislice iteration to prevent the aliasing effect of convolution. The multiple scattering masks the real 
specimen structure when the specimen thickness exceeds a certain value. This effect of multiple scattering 
is recognized from the probability distribution of the scattered electrons in addition to the scattering 
amplitudes obtained through the procedure developed in the present work. 

I. Introduction 

Cowley & Moodie (1957) formulated the multislice 
method for the n-beam dynamical electron scattering 
in an analogy to classical optics. It was shown by 
Goodman & Moodie (1974) that, in the limiting case 
of zero slice thickness, this formulation is identical to 
the SchrSdinger equation which rules the behaviour 
of electrons. Extensive applications of this method to 
two-dimensional problems, facilitated by the electronic 
digital computer, have been made by the Australian 
school in the series n-Beam Lattice Images (Allpress, 
Hewat, Moodie & Sanders, 1972; Lynch & O'Keefe, 
1972; Anstis, Lynch, Moodie & O'Keefe, 1973; 
O'Keefe, 1973; Lynch, Moodie & O'Keefe, 1975; 
O'Keefe & Sanders, 1975). Goodman & Moodie (1974) 
summarized the computing technique where convolu- 
tion integrals are directly calculated. 

In this paper, the multislice formula is derived 
directly from the integral form of the SchrSdinger 
equation. This integral equation is first replaced by 
a function similar to the infinite Born series (Schiff, 
1956; Fujiwara, 1959), and solved by applying the 
method of stationary phase (Eckart, 1948) to each 
term. A new practical computing technique is devel- 
oped where the convolution integrals are carried out 
through Fourier transforms on the basis of the Fourier 
theorem of convolution. The effects of the number of 
beams and of the slice thickness on the multislice 
calculation are discussed in terms of this newly devel- 
oped computing technique. 

H. Theoretical 
2.1 Derivation of the multislice formula on the basis of 

the Schr6dinger equation 
In the Cartesian coordinate system, the SchrSdinger 

equation is written as 

2m V(r) ~(r), (1) (V 2 + k2)~(r) = ~ -  . 

where k = Ikl, k is the wavevector of the incident elec- 
trons, V(r) is the potential energy, and r = (x, y, z). The 
solution of this equation is usually given in the follow- 
ing integral form: 

2m f exp (iklr-r ' l )  V(r'). ~p(r')dr'. 
~( r )=exp ( ik r ) -  ~ j I r - r ' l  

(2) 
If the wave function is expressed by the product of the 
incident plane wave and a factor cp(r) which describes 
a modulation on the incident wave as 

~(r) =exp  (ikr)cp(r), (3) 

then (2) is rewritten in terms of cp as: 

2m f exp i { k l r - r ' ] - k ( r - r ' ) }  
cp(r) = 1 - ~ j I r - r ' l  

x V(r'). ~p(r')dr'. (4) 

When the high-energy electron scattering satisfies the 
following condition: 

~2 <~ 1 (~; the scattering angle), 

the small-angle approximation holds and 

I r - r ' l _ ~ z - z ' .  

Thus 
[b-b'l 2 

k lr-r ' l -  k(r-  r')= k 2(z-  z')' 

Here the two vectors b = (x,y) and b ' =  (x',y') are per- 
pendicular to the incident electrons, i.e. z-axis (see 
Fig. 1). Equation (4) is approximated for the forward 
scattering as 

f f z " = Z i V ( b ' , z ' ) c p ( b ' , z  ') cp(b, z) = 1 -  h-v " 

x z - z' ~.i exp ik 2 ( z - z ' ) J J  dz'db'. (5) 
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Here the relationship 

2m i 1 
4rch 2 - hv 2i 

is used, and v is the velocity of the incident electrons. 
The term in the square brackets describes the wave 
propagation between two points r = (b, z) and r '=  (b', z') 
and is defined as the propagation function (Cowley & 
Moodie, 1957), which will be denoted by p(b,z) here- 
after: 

p(b,z)= 1 1 { Ib[2~ 
z ~ exp ik ~ .  (6) 

p(b, z) has the form of the Huygens wavelet within the 
paraboloidal approximation, and has the following 
property, like a diffraction integral over the plane 27 
positioned at z" between z and z': 

p(b - b', z - z') 

= Jl  p(b - b", z - z")p(b" - b', z" - z')db". (7a) 

Here p(b, z) is normalized as 

f p(b,z)db= 1. (7b) 

With these relations (7a) and (7b) of the propagation 
function, (5) will be modified as follows: 

q~(b,z)=l+ - _o V(b",z")~0(b", 

x p(b - b', z - z')dz"db" 

+ - V(b',z')q~(b',z') 
II z '  = z o  

x p(b - b', z - z')dz'db' 

= f { l +  ( -  ~v) ;v ,  f::::zfooV(b'"z") 
"x 

× q~(b", z")p(bo - b", Zo - z")dz"db"~ 
) 

x p(b - bo, z -  zo)dbo 

+ ( -  i)fv . + z ' = z o  

x p(b - b', z - z')dz'db' 

- fq~(bo, zo)p(b-bo, z- zo)dbo 

+ (--h--v);v,i f:i~:o V(b''z')qg(b''z') 
× p(b - b', z - z')dz'db'. (8) 

This integral equation of Volterra's type (Margenau & 
Murphy, 1943) is solved by expanding ~o(b,z) in an 
infinite series: 

(')" q3(b,z)= ~ - ~ f,(b,z). (9) 
n = O  

The following set of equations is obtained by equat- 
ing the coefficients of( - i /hv)"  on the two sides of (8) 
after substituting (9) into (8): 

fo(b,z) = f q,(bo, zo)p(b-bo, z-zo)dbo, (lOa) 

L(kz)- v(V,z')L_ ~(V,z') 
• = z O  

x p (b -  b ' , z -  z')dz'db', n = 1,2, 3, . . . .  (10b) 

For the potential varying slowly over the distance of 
order {(Z-Zo)/k} 1/2, fl becomes 

fl(b,z) = V(b',z')~(bo, zo)p(b'- bo, z' - Zo) 
Z '  = z O  

× p (b -  b', z -  z')dz'db'dbo 

= ff:'=~'=zo V \((z'-z°)b+(z-z')b°))Z--~oo 

x q~(bo, zo)p(b- bo, z -  zo)dz'dbo (11) 

after the integration over b' by the method of stationary 
phase (Appendix). If the potential varies slowly in the 
region of (z-Zo).  ~, f l  finally becomes 

fl(b,z)= f {  fii~:oV(bo, z')dz '} 
x q~(bo, zo)p(b-bo, z-zo)dbo. (12a) 

With the successive application of the stationary-phase 
method (Appendix), f,  reduces to 

f,(b,z) = f ~ {  f:,=Z,=zo V(bo, z')dz'}" 
x q~(bo, zo)p(b-bo, z-zo)dbo. (12b) 

¢ 0~0, z0) , (b,z) 

r" = (b", z") 

~ q r = (b,z) 

Z 

Fig. 1. A derivation of the multislice formula from an integral form 
of the SchrSdinger equation.  The region of integration in the 
forward-scattering approximat ion will be divided into two parts:  
V~ in front of and Vn inside the slice. 

ro= bo, Zo) 
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When (10a), (12a) and (12b) are substituted into (9), 
¢p becomes 

, ;: io ,boz,dz t 
x q)(bo, zo)p(b-bo, z - zo )dbo  (13a) 

after the summation over n. Equation (13a) is simply 
formulated by the convolution integral (denoted by .) 
as 

tp.+ l(b) = [~o,(b). q.(b)] • p(b , z ,+a- z , ) .  (13b) 

Here the following simplified notations are used: 

¢p,(b) = q~(b, z,), (14a) { ,  fz:z +  } 
- V(b , z ' )dz ' .  (14b) q,(b) = exp -~v .)z,=z, 

The sequence of the wave propagation and the phase 
shift by q in (13b) is in the reverse order to that in the 
Cowley-Moodie equation (Goodman & Moodie, 
1974). This difference in the sequence order is due to 
the manner of the projection of the potential in the 
slices. The projection of the potential onto the front 
surface of the slice leads to (13b) while that onto the 
rear surface leads to the Cowley-Moodie equation. 
However, the difference in the final result of the multi- 
slice calculation is negligible when a large number of 
slices are taken into account. 

The following conclusion may be drawn from the 
above derivation of the multislice formula. The poten- 
tial distribution should vary slowly over the distance 
(Az/k) 1/2 or Az.  ~, where Az denotes the slice thickness 
(i.e. A z = z - z o ) .  These conditions are almost identical 
to 

A z < k d  2, (15) 

since ~ _  1/kd, where d is the distance over which the 
potential does not not change by an appreciable frac- 
tion. In the high-voltage limit where k becomes infinite, 
the whole potential can be projected, so that 

q~z(b) = exp - ~ . ;  - oo V(b, z')dz' , (16) 

which is identical to the Glauber (1953) approximation 
for high-energy scattering. Equation (16) will be de- 
noted as a thin-phase-grating approximation, because 
the specimen is seen as a thin object by the high-energy 
electrons. It should be noted that even at the highest 
accelerating voltage the condition of the Born approx- 
imation: 

V(r)Az/hv ,~ 1 

may not be satisfied in the case of the thick specimen, 
because the value of hv never exceeds the limiting value 
hc (equal to 1973 eV •), where c is the velocity of light. 

2.2 Scattering amplitudes 

For small-angle scattering, such as in the case of 
high-energy electrons, the scattering amplitudes are 
given by the Fourier transform of the wave function 
q)(b,z) at the bottom surface of specimen as follows: 

1 ~ [exp i(k-k')r]{q~(b,z)-  1}db F(k ,k ' )=  

- 4rch 2 (b', z')q~(b', z') exp i(k - k')ze 

x _ z---= -- exp i ( k -  k')b 
z 2i 

+ klb-b-~-"12~2(z-z) J db]  db'dz', (17a) 

where k and k' are the wavevectors of the incident and 
the scattered electrons respectively, and e denotes the 
unit vector along the z direction. When the integral 
over the plane of b is carried out, then 

1 I 
z - z '  Ai [ ' ' ' ]  

: exp [i(k - k')b'] exp { - ilk - k'lE/[2k/(z - z')] }. 

When the small-angle approximation holds and 
kZ~4/4 ~ 1, then 

exp { - i ( k - k ' ) ( z - z ' ) e }  
- exp { - ilk - k'lE/[2k/(z - z')] }, 

where Z is the specimen thickness. Thus (17a) reduces 
to 

F(k,k') = 2m f 4rch 2 V(r)q~(r)[exp i ( k - k ' ) r ] d r ,  (17b) 

which corresponds to the definition of the scattering 
amplitudes. 

IIl. Computation procedure 

The convolution integral (equation 13b) is to be com- 
puted in the multislice method. Goodman & Moodie 
(1974) summarized the practical procedure of the direct 
calculation of the convolution integral. In this present 
work a set of new computer programs is devised. The 
convolution is now calculated through the two- 
dimensional fast Fourier transform (FFT) which is 
carried out by the successive application of the one- 
dimensional FFT algorithm (e.g. Brigham, 1974). The 
computation time for the convolution is mainly deter- 
mined by the number of multiplications. If N1 and N 2 
are the number of beams (or sampling points) along 
the two axes respectively, the computation time of one 
FFT is proportional to 

N2(N1 log2 N1)+NI(N2 log2 N 2 ) = N  log2 N 

where N = N x N  2. Here N1 and N 2 must be chosen to 
be the powers of 2 in the base-2-FFT algorithm. Then 
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the computing time for one multislice cycle in this 
procedure is proportional to 

2(N logz N)+ 2N = 2N log2 2N 

as seen from Fig. 2, while one cycle of multislice calcu- 
lation based on the direct convolution requires a 
computation time proportional to N 2 +N~_N 2. The 
use of the present programs makes it possible to include 
about 8000 beams within a moderate computing time 
which may correspond to the time of the direct con- 
volution of about 500 beams. The wavefunctions, as 
well as the scattering amplitudes, are calculated in the 
present computation scheme to give some physical 
insight in terms of real-space quantities. 

The newly developed programs are suitable for the 
crystal arrangement where coherent illumination is 
assumed. Each slice is occupied by the same number of 
unit cells along the incident electron direction (identical 
to the c axis of the crystal), so that the propagation 
function and the phase-grating function are identical 
for each slice. These functions are calculated in advance 
of the multislice cycle. The propagation function P in 
reciprocal space is used in the present programs, and 
calculated through the following equation (Goodman 
& Moodie, 1974): 

P(h,k)=exp{-2rciAz~[(h)2+(k)2]}, (18) 

where h and k are integers representing the reciprocal 
lattice points of the rectangular cell of dimensions a 

STRUCTURE I 
FACTORS 
F(h , k ,o )  ] 

1 [ "PROJECTE61 
POTENTIAL 1 
Vp(x,y) ] 

I PHASE I GRATING 
q(x , y )  

MULTI 1 FFT2 
[ #n'=#n'q ] ~1%' =~{%'}[ 
(if n=l, #l'=q) 

I A CYCLE OF 
MULTI-SLICE 
CALCULATION 

FFT2 MULTI 
I @n+l = ~" {¢n+l}l~ [ @n+l = ~n''P I 

l 
Fig. 2. A flow chart of the procedure for the multislice calculation. 

Here the capital letters q~ and P denote the Fourier transforms of 
the corresponding functions ~0 and p respectively. The phase 
grating q and propagation function P are computed in advance 
of the multislice iteration. 

and b. The phase-grating function q is directly calcu- 
lated with (14b) from the projected potential. The pro- 
jection of the potential along the c axis of the crystal 
is synthesized by the FFT program through the follow- 
ing Fourier projection theorem: 

1 Vp(x,y)= ~ ~  F(h,k,O)exp[2rci(hx+ky)], (19) 

where F(h, k, 0) is calculated from the atomic scattering 
factors (International Tables for X-ray Crystallography, 
1974) for the model specimen.3" 

The convolution (equation 13b) is carried out by the 
use of the Fourier theorem of convolution: 

J-~{[qg,. q] • p}=~{cp,.q}.~{p}, 
so that 

q~,+l =~{q~,.  q}. P .  (20) 

A simple FFT algorithm adopted in the present pro- 
gram requires that the number of sampling points of 
the input function must be equal to that of the trans- 
formed output function. The corresponding unit-cell 
edge is thus divided into 2H points for the 2H beams 
from - H  to H - 1  along one axis. The wavefunction 
and the scattering amplitudes calculated by the present 
scheme are self-normalized according to Parseval's 
theorem for a pure phase object (i.e. a specimen with 
no absorption). The square sum of these amplitudes is 
independent of the slice number n: 

Y ,  , = , , 
x = 0  Y=0 

N 1 / 2 -  1 N 2 / 2 -  1 

)-', ~ I~,(H,K)I 2 = ~ ~ I~,+ x(H,K)I z. 
H = - N 1 / 2  K = - N 2 / 2  H K 

When the sampling intervals are too coarse to detect 
the specimen structure, an aliasing effect (the over- 
lapping of the waveform; Brigham, 1974) occurs in a 
discrete Fourier transform such as the FFT. Thus a 
sufficient number of sampling points (or beams) 
should be taken to avoid the aliasing effect. 

IV. Applications 

Multislice calculations based on the present technique 
are applied to the electron scattering of chlorinated 
Cu-phthalocyanine (Uyeda & Ishizuka, 1974). Its 
crystal data are: 

a =  19"62, b=26"04, c=  3"76/~, 13= 116.5 °. 

The accelerating voltages for the incident electrons are 
assumed to be 100 and 500 kV. The wavefunctions and 

5" In the present scheme of the multislice calculation the phase 
grating q in real space is used, while Goodman & Moodie (1974) use 
its Fourier transform Q in reciprocal space. The present method of 
calculating q by means of the FFT has the same advantage as Lynch's 
(1974) method of evaluating Q directly from the F(h,k,O) as discussed 
by him. 



744 A NEW APPROACH TO THE MULTISLICE METHOD 

the scattering ampli tudes  are calculated as functions 
of either the number  of beams or the slice thickness. 
The kinemat ical  results as well as the results of the thin- 
phase-grating approximat ion  are given in §4.2. The 
probabi l i ty  distr ibutions of electrons are calculated to 
estimate the m a x i m u m  specimen thickness for which 
the simple relations with the specimen structure can 
be maintained.  

4.1 Phase-grating calculation 
Two sets of the phase-grat ing functions were calcu- 

lated in advance of the multislice i teration in order that 
the effect of the number  of beams and the slice thickness 
in the multi-slice a lgor i thm could be estimated. A set of 
the phase-gratings q was evaluated from the pro- 
jected potentials calculated for 100 kV electrons with 
various numbers  of beams as summarized  in Table 1 
with the slice thickness of one unit cell (3.76 A) as- 
sumed. The non-l inear  effect of Vp on q is relatively 
small  in this case, since (Vp)max/hv~360/1082o(0"33) at 
the centre of the copper a tom (hv = 1082 eV A for 100 
kV electrons). Here, the low-resolution projected po- 
tential  calculated with a small  number  of beams such 
as 16 x 32 or 32 x 64 gives the low-resolution phase 
grating, but  its Four ier  t ransform Q is almost  equal to 
the most accurate one calculated from 64 x 128 beams. 
Table  2 shows the power spectrum of the phase grating 
of 64 x 128 beams vs 2(sin 0/2). It can be seen that the 
beams up to 2(sin 0/2)= 1.8 A-1 must be included in 
order to give a sufficiently accurate phase grating for 

Table  2. Power spectrum of a one-unit-slice phase 
grating for 100 kV electrons 

Number 
2(sin 0/2) of beams Fraction 
0.0-0.2 57 0-998590 
0"2-0"4 174 0"000550 
0"4-0"6 288 0"000476 
0"6-0"8 394 0"000206 
0"8-1"0 522 0"000137 
1 "0-1 "2 638 0.000025 
1"2-1"4 744 0"000010 
1"4-1"6 862 0-000004 
1 "6-1 "8 972 0"000002 
1"8-2"0 907 0.000000 

the present model  specimen with slice thickness of one 
unit cell, a l though the phase grating calculated from 
the small  number  of beams gives at least an approx- 
imate result for the phase grating per se. 

Another  set of phase-grat ing functions was obtained 
for 500 kV electrons with various slice thicknesses of 
2, 4, 10 and 20 unit  cells. The number  of beams is kept 
constant  at about  8000 (64 x 128 beams with about  
4000 allowed beams) in these calculations. More  beams 
are needed to represent q accurately with increasing 
slice thickness, because the non-l inear  effect of lip 
becomes appreciable,  as pointed out by Lynch & 
O'Keefe (1972). The power spectra of these phase 
gratings shown in Table 3 have guaranteed that the 
number  of beams was sufficient for slice thicknesses 
up to 20 cells. 

Table  1. Some conditions for various numbers of beams with chlorinated Cu-phthalocyanine 

Number Maximum Maximum Sampling 
of beams index 2 sin 0/2 (A- 1) interval (A) 

Case (allowed*) h ; k a* ; b* a/N1 ; b/Nz 
(1) 16x32 512 (256) 8 ; 16 0.46 ; 0.61 1.10 ; 0.81 
(2) 32x64 2048 (1024) 16 ; 32 0"91 ; 1"23 0"55 ; 0.41 
(3) 64x64 4096 (2048) 32 ; 32 1.82 ; 1"23 0.27 ; 0.41 
(4) 64x128 8192(4096) 32 ; 64 1.82 ; 2.46 0.27 ; 0.20 

* Possible reflexions allowed by the specimen symmetry cmm. 

Table  3. Power spectra of phase gratings with various slice thicknesses for 500 kV electrons (64 x 128 beams) 

Number 
Fraction of power spectra ( x 10 6) 

2 (sin 0/2) of beams 2 cells 4 cells 10 cells 20 cells 
0"0-0"2 57 997764 991146 (991104)* 948087 (946182)* 832456 (808118)* 
0-2-0-4 174 871 3432 (3465) 19407 (20908) 54826 (73850) 
0.4-0.6 288 753 2984 (3006) 17372 (18381) 54590 (67766) 
0.6-0.8 394 328 1296 (1303) 7637 (7956) 24908 (28983) 
0.8-1.0 522 219 871 (869) 5411 (5159) 20456 (16834) 
1.0-1.2 638 39 156 (153) 1092 (894) 5425 (2891) 
1.2-1.4 744 17 70 (66) 550 (355) 3316 (1052) 
1.4-1.6 862 7 31 (28) 280 (123) 2089 (366) 
1.6-1.8 972 2 8 (6) 103 (30) 1056 (104) 
1.8-2.0 907 0 3 (1) 38 (8) 477 (27) 
2.0-2.2 812 0 0 (0) 16 (3) 228 (8) 
2.2-2"4 766 0 0 (0) 5 (0) 105 (2) 
2"4-2"6 607 0 0 (0) 3 (0) 46 (0) 
2"6-2"8 304 0 0 (0) 0 (0) 17(0) 
2"8-3"0 145 0 0 (0) 0 (0) 6 (0) 

* Power spectrum of multislice result at the same thickness. 
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4.2 Multislice iteration 
4.2(a) Effect of number of beams 

The first set of phase gratings obtained in §4.1 was 
used in multislice iteration. The slice thickness was 
kept constant at one unit cell, and the incident electron 
beam was assumed normal to the reciprocal net plane. 
Fig. 3 shows the typical results for the scattering am- 
plitudes for various numbers of beams. The calculated 
value is supposed to approach the limiting value of an 
analytical integration as the number of beams is in- 
creased. As seen in Fig. 3, the results for 64 x 64 beams 
and 64 x 128 beams show only slight differences up to 
a crystal thickness of 100 cells. The sum of differences 
of ~A and ~B is defined as a measure of convergence 
to the limiting value: 

H K 

Z ~ ]l~a(hk)l--I~B(hk)ll 
R(HK) = h = 0 k = 0 

H K 

~, {Ifb a(hk)l + l~n(hk)l} . 
h = 0  k=0  

The value of R(16,8) is less than 0.012 for each slice up 
to 100 cells in the case of 64 x 64 and 64 x 128 beams. 
These results are thus close to the limiting value of the 
scattering amplitudes below this crystal thickness. 
The result for 32 × 64 beams, however, starts to deviate 
from the estimated limitingovalue at about the specimen 
thickness of 50 cells (190 A), although the calculation 
includes about 1000 beams allowed by the specimen 
symmetry ofcmm. The results for 16 × 32 beams deviate 
from the limiting value at an early stage of multislice 
iteration. This deviation is especially noticeable in the 
results for a weak reflexion such as 150 or for off-centre 
reflexions such as 800, 0,16,0 and 8,16,0 as seen from 
Fig. 3. The failure in multislice iteration is appreciable 
in the case of 32 × 64 beams and is drastic in the case of 
16 × 32 beams. 

4.2(b) Effect of  slice thickness 
In order to estimate the upper limit of slice thickness 

in the multislice calculation, computations were car- 
ried out for 500 kV electrons with the second set of 
phase-grating functions obtained in §4.1. In these 
calculations the same slice thickness and number of 
beams were used as in estimating each phase grating. 
The scattering amplitudes for various slice thicknesses 
are shown in Fig. 4. The results for the slices of two 
and four cells are almost the same and the value of 
R(32,64) is less than 0.007 up to the crystal thickness of 
200 cells, so that these results are close to the limiting 
value, which will be obtained by the calculation with 
an infinitesimal slice thickness. The slice thickness Az 
of four cells is equal to 15.0/~. The condition of the 
stationary-phase approximation (equation 15) will be 
satisfied with the d value of 0.2 A since k = 442 A-  1 for 
500 kV electrons. In the case of 100 kV electrons 
(k= 170 A-1), the approximate limiting value was ob- 
tained with the slice thickness of two cells (7.5 A). 

An approximate result can be obtained through the 

calculation with thicker slices, as shown in Fig. 4, 
when the pseudo-upper-layer interaction is small. 
The parameter for the pseudo-upper-layer interaction 
is defined (Goodman & Moodie, 1974): 

• 2 ~ \ a J  + " 

The values of - ~  for the reflexions in Fig. 4(a)-(f), are 
0.0, 0.133 × 10 -3, 0.372 × 10 -3, 0.279 × 10 -3, 0.415 × 
10 -z and 0.166 × 10 -1 /~-1 respectively, c~(hk) is pro- 
portional to the slice thickness Az. The reflexion where 
~(hk)<0"5 reflects the general pattern of the limiting 
scattering amplitudes as concluded from the results for 
slice thicknesses of 10 and 20 cells. The effect of the 
pseudo-upper-layer interaction is seen in the reflexion 
in Fig. 4(f) in the calculation of 20 cells slice thickness 
where ~(16,32) is equal to 1-25. These results confirm 
that the rapid calculation with thicker slices gives at 
least approximately correct scattering amplitudes. The 
result based on the thin-phase-grating approximation 
(equation 16) did not agree with the limiting value of 
the multislice calculation when the crystal thickness 
exceeded 20 cells (75 A) for 500 kV electrons. This 
critical thickness may be reduced to one half for 100 kV 
electrons, because the factor hv in (16) is reduced from 
1703 to 1082 eV ~, when the accelerating voltage 
changes from 500 to 100 kV. 

4.3 Wavefunctions 
The wavefunctions are obtained as a function of the 

specimen thickness in the course of the calculation 
with the present program, in addition to the scattering 
amplitudes. Fig. 5 shows some results of the intensity 
distribution of the wave function (i.e. the probability 
distribution of the electrons) at the indicated crystal 
thickness. They were calculated for 500 kV electrons 
with the slice thickness of two cells in the 64 x 128 case 
[see §4.2(b)]. In these figures, lighter coloured regions 
show a higher electron density. Since the model speci- 
men is assumed to be a pure phase object, the electron 
density difference for crystals thinner than 10 unit cells 
is relatively small. When the crystal thickness is over 
40 cells, it is seen that electrons converge into each 
atom position and the dark areas of the electron den- 
sity appear in the surrounding regions. This phenom- 
enon can be compared to the action of a convex lens 
positioned at each atom location. Fig. 6 shows the 
probability density at the positions of copper, chlorine 
and nitrogen atoms as a function of specimen thickness• 
The oscillations of intensity with specimen thickness 
can be seen in the scattering amplitudes shown in 
Figs. 3 and 4, and also in the electron densities of the 
scattered waves in Fig. 6. The wavefunction is quanti- 
tatively analysed in terms of the specimen structure 
when the probability distribution of the scattered 
electrons is proportional to the specimen thickness. 
The thickness of 40 cells (150 ~,) seems to be the critical 
value for 500 kV electrons, below which the propor- 
tionality between the probability density and the 
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Fig. 3. Scattering amplitudes (and phases) calculated for 100 kV electrons as a function of the specimen thickness (number of cells) with 
various numbers of beams: 64x  128 beams (solid line), 64x  64 beams (dotted line), 32 x64  beams (dashed line) and 16x 32 beams 
(chain line). (a) shows the change of the main beam, (b) and (c) show a strong and a weak reflexion respectively. (d) to ( f )  give the examples 
of off-centre reflexions. The results for the amplitudes of the reflexions (a), (b) and ( f )  and that for the phase of all (a) to ( f )  for 64 x 64 beams 
are almost equal to those for 64 x 128 beams. The phase of reflexion (b) for 32 x 64 beams is almost equal to the results for 64 x 128 and 
64 x 64 beams. 
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Fig. 4. Scattering amplitudes (and phases) calculated for 500 kV electrons as a function of the specimen thickness. The results of the multislice 
calculation with the slice thickness of two cells (solid line), four cells (dashed line), 10 cells (dots) and 20 cells (squares) are shown. (a) shows 
the change of the main beam, (b) that of a strong beam, and (c) and (d) that of a weak beam. (e) and (f) show the change of the beam scattered 
in the direction of the off-centre part. The amplitudes for the slice thickness of two and four cells are almost identical for all (a) to (f). The 
phase for the slice thickness of four cells is almost equal to that for two cells except for reflexions (e) and (f). The results based on the 
kinematical theory (solid straight line denoted by K) and the thin-phase-grating approximation (solid line denoted by TPG) are also shown 
for each reflexion. 
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specimen thickness is maintained. The critical thick- 
ness for 100 kV electrons was found to be about 30 cells 
(100 A). The critical thickness will be lower for the 
specimen containing heavy atoms, since the oscillating 
behaviour of the electron density at the position of the 
heavier atom is seen at a smaller specimen thickness. 

V. Discussion 

The following conditions are required for the deriva- 
tion of the multislice formula: 

(a) ~z~ 1, for the maximum scattering angle, 
(b) Az<~kd 2, for the maximum slice thickness, and 

for the scattering amplitude calculation: 
(c) kZa4/4 ~ 1, for the specimen thickness and the 

scattering angle of each reflexion. 
The condition (a) is usually satisfied except in 

LEED experiments. The condition (b) restricts the 
maximum slice thickness, which is proportional to the 
wavenumber of the incident electrons and influenced 
by the rate of the potential change through the param- 
eter d. The correct value of the scattering amplitudes 
will be obtained under the condition (c) which gives 
the relation between the specimen thickness and the 
scattering angle of each reflexion. Although the slice 
thickness is restricted by the condition (b), there is no 
restriction on the number of beams in the multislice 
calculation. 

The number of beams required to obtain an accurate 
result in multislice iteration will be determined by the 
specimen structure, which defines the scattering 
property of each slice. Another important factor deter- 
mining the number of beams is the final specimen 

C• 500 KV 

! ! 

50 I00  

Fig. 6. Intensity distribution of the wavefunction calculated for 500 
kV electrons as a function of the specimen thickness. The values at 
the positions of copper, chlorine and nitrogen atoms are shown. 
The oscillating behaviour of the intensity of the heavier atom is 
seen at a smaller specimen thickness. 

thickness, since each convolution in a multislice 
iteration usually requires a greater number of beams 
(or sampling points) than those of the two convoluting 
functions. When the number of beams is not sufficient, 
the aliasing effect will be appreciable in each convolu- 
tion based on FFT. Thus the number of beams required 
will be larger as the specimen thickness increases. For 
the same reason, the number of beams in multislice 
iteration must be no less than the number of the 
sampling points in the phase grating. It should be 
noted that the number of beams required in the final 
multislice iteration does not depend on the slice thick- 
ness, if the number of sampling points in the phase 
grating is sufficient. The number of sampling points in 
the phase grating, however, is affected by the slice 
thickness and the specimen structure. When the slice 
thickness is small enough for the non-linear effect of 
the projected potential to be neglected, the required 
number of sampling points in the phase grating is ap- 
proximately equal to that of the projected potential. 
The number of sampling points should be increased 
for the thicker-slice phase grating, since the non-linear 
effect becomes appreciable. 

The following conclusions will be drawn from the 
above discussions and the results of calculations based 
on the model specimen, chlorinated Cu-phthalocyan- 
inc. 

(1) The number of beams for the multislice calcula- 
tion based on the FFT algorithm should be no less 
than the number of sampling points which represent 
the correct projected potential. In order to represent 
the projected potential with sufficient accuracy, the 
unit-cell edges should be divided into 0.25 to 0.30 A 
intervals, which correspond to a scattering vector 
2(sin 0/2) of 1.6 ~ 2"0 A-1. This value is not much af- 
fected by the wavelength of the incident electrons and 
the specimen structure. The multislice calculation with 
the low-resolution phase-grating function fails because 
of the aliasing effect of the convolution during the 
multislice iteration. 

(2) The maximum slice thickness is about kd 2, where 
d is chosen to be about 0.2 A. This value d does not 
depend on the specimen except when it contains very 
heavy atoms. The failure in the multislice calculation 
with thicker slices is due to the use of an exceedingly 
thick phase grating, which is already different from the 
multislice result, as seen from Table 3. The stationary- 
phase approximation (equation 15) holds to about a 
slice ten times thicker than that which the Born ap- 
proximation requires. The specimen thickness in the 
present model should be far less than 18 and 11 A for 
500 and 100 kV electrons respectively to satisfy the 
condition of the Born approximation. 

(3) The effect of multiple scattering on the wavefunc- 
tion becomes serious when the specimen thickness ex- 
ceeds its critical value. The linear relationship between 
the probability distribution of electrons and the 
specimen structure holds in the range below this 
critical thickness. These values are 150 and 100 A for 
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500 and 100 kV electrons respectively in the case of the 
present model specimen. 
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APPENDIX 
1. Evaluation of equation (11) 

From the definition of the propagation function, 

1 1 
p(b ' -  bo, z ' -  zo)p(b-b ' , z -  z ')= (202 ( z ' -  Zo) ( z -  z') 

x exp ilk Ib-b°lZ 
2(Z-Zo) 

z-Zo [b'- (z'-zo)b + (_____z-z')bol2 
+ ik 2(z '-zo) ( z - z ' )  , Z-Zo I 3" 

The integration over b' is carried out by the method of 
stationary phase (Eckart, 1948). When the potential 
distribution does not change appreciably over a dis- 
tance of the order of 

}1/2 ~ Z _ _ Z o ~ I / 2  
2( z ' - z ° ) ( z - z ' !  bounded by (A1) 

[ k(z-zo) [ ~ j  ' 

then 

f V(b', z')p(b' - bo, z' - zo)p(b- b', z -  z')db' 

-~ V (!z'-zo)b+(z-z')bo~~ / 

x |p (b '  - bo, z' - zo)p(b - b', z - z')db' Q/ 
- V ((z ' -zo)b+(z-z ' )bo~ 
- z : ~  /pO~-bo, z -  Zo). (A2) 

2. Verification of equation (12b) 

This equation is proved by mathematical induction as 
follows. Iff ,  satisfies (12b), then f ,+ l  will be obtained 
from (10b): 

L+l(b,z) 

= V(b',z') V(bo, z")dz" 
'=z 0 z"=zO 

x ~o(bo, z)p(b' - bo, z' - zo)dbo~ p ( b -  b', z -  z')dz'db'. 
) (A3) 

By the same method as used to give (A2),f,+ 1 becomes 

f.+ x(b,z) 

f { f~ '=z  1 I fz"=::' 1" d } = V(bo, z') ~ V(bo, z")dz" z' 
z'=go g" =go 

x ~p(bo, zo)p(b- bo, z - zo)dbo • (A4) 

The integration over z' in the curly brackets is carried 
out by parts: 

.z,=zoV(bo, z ') V(bo, z")dz" dz" 
z"=zo 

- V(bo, z')dz' (A5) 
(n + 1)! z'=to 

f. + 1 is finally found in the desired form: 

T M  1 = V(bo, z')dz' 
Z' -~. zO 

x ~p(bo, zo)p(b-bo, z-zo)dbo.  (A6) 

With equation (12a) and this equation the math- 
ematical induction is completed. 
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